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Alternating Current RLC Circuits 

1 Objectives 

1. To understand the voltage/current phase behavior of RLC circuits under applied al-
ternating current voltages, 

2. To understand the current amplitude behavior of RLC circuits under applied alternat-
ing current voltages, and 

3. To understand the phenomenon of resonance in RLC circuits. 

2 Introduction 

In previous labs1 you studied the behavior of the RC and RL circuits under alternating 
applied (or AC) voltages. Here, you will study the behavior of a similar circuit containing 
series connected capacitor, inductor, and resistor. This is, quite reasonably, called an RLC 
Circuit ; see Figure 1. 

3 Theory 

Once again, let’s analyze this circuit using Kirchoff’s Rules. As always, you find 

Vs(t) − VR(t) − VL(t) − VC (t) = 0 , 

1Alternating Current RC Circuits and Alternating Current RL Circuits 

Figure 1: The RLC circuit. 
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leading to a differential equation we have not encountered in these labs before 

d2q(t) R dq(t) 1 
+ + q(t) = Vs(t) , 

dt2 L dt LC 

where q(t) is the charge on the capacitor. We will not actually solve this equation, as the 
derivation is beyond the mathematics level of this course; however, in Appendix A we quote 
some important results. For a sinusoidally varying source voltage 

Vs(t) = Vs cos ωt , 

we find the current is again out of phase, but this time, whether the current lags or leads the 
applied voltage depends on whether the inductive or capacitive reactances (both defined as 
before) dominate the behavior of the circuit at the driving voltage. Comparing the solutions 
in the Appendix with our differential equation here, matching coefficients, we have 

1 R 
ω0 = √ 2β = . 

LC L 

Putting all these definitions together, we can solve for the current and voltage profiles as a 
function of frequency 

Vsω cos (ωt + δ) 
I(t) = q 

L 2 2 (ω0
2 − ω2) + (2βω) 

cos (ωt + δ) 
VR(t) = I(t)R = Vs2βω q 

(ω0
2 − ω2)

2 
+ (2βω)2 

sin (ωt + δ) 
VC (t) = q(t)/C = Vsω0

2 q 
(ω0

2 − ω2)
2 
+ (2βω)2 

d2q(t) sin (ωt + δ) 
VL(t) = −L = Vsω

2 q 
dt2 

(ω2 2 2 + (2βω) 0 − ω2) 

where the phase is given by 

ω2 
0 − ω2 

tan δ = . 
2βω 

One useful tool for the study of two equifrequency signals is the XY mode of the oscillo-
scope. In the standard mode of the oscilloscope, you can think of the display as a standard 
plot of the signal, with the independent variable, t, on the horizontal axis, and the depen-
dent variable, V (t), on the vertical axis. The XY mode can be thought of as a parametric 
plot, where the independent variable, t, is implicit (not displayed), while the horizontal and 
vertical axes trace out two different dependent variables, V1(t) and V2(t). The XY mode is 
most useful when the two signals have commensurate frequencies (their ratio is rational), 
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(a) 90°Phase (b) 45°Phase (c) 1°Phase 

Figure 2: Three example plots for the XY mode of the oscilloscope. In each plot, I show 
VR(t) versus Vs(t); the frequencies of the two signals are the same, while the amplitude of 
VR(t) is smaller than Vs(t). On the left, they are 90°out of phase; in the middle, 45°; on the 
right, they are one degree out of phase. 

particularly when their frequencies are the same. In these cases, the XY signals give both 
relative frequency and relative phase information in an easy to interpret manner; such plots 
are called Lissajous Figures. Figure 2 shows a few of these plots. When the two signals have 
the same frequency, the figure traces an ellipse. The major axis of the ellipse rotates, and 
the minor axis shrinks, as the phase changes. As the phase approaches 0, the minor axis 
also vanishes. 

Just as in the RC and RL settings, we can define a circuit impedance by 

Z2 = R2 + (XL − XC )
2 , 

which has all the same consequences for the relationships between the voltage amplitudes as 
it did for the RC and RL circuits. We could rewrite this equation in terms of the voltage 
amplitudes (that’s mostly left to you; see the Pre-Lab exercises); here we’ll only note the 
phase. You can show 

XL − XC 
tan δ = . 

R 

Just as we did for the RC and RL circuits, we should consider the behavior of the RLC 
circuit as a function of frequency . . . and we’re in for some new surprises, with very rich and 
interesting phenomenology. Consider first the phase. Notice that δ = 0 when XL = XC . 
This is called the phase resonance of the circuit. At what frequency, ωR, does this happen? 

1 1 
XL = XC = ωRL = −→ ωR = √ = ω0 . 

ωRC LC 

This is called the natural frequency of the circuit. Where XL dominates XC , the current lags 
the drive voltages, while the current leads the drive voltage in the opposite case. Thus, the 
phase can vary between −π/2 and π/2, depending on the values of the circuit components. 
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Figure 3: The phase angle as a function of angular frequency is on the upper left. The 
resistor voltage/current amplitudes are displayed on the upper right. The lower left shows 
the capacitor voltage amplitude, while the lower right shows the inductor voltage amplitude. √ 
In all cases, the frequency is normalized in units of ω0 = 1/ LC. Because the phase and 
amplitudes are also a function of 2β = R/L, we plot families of curves for various values of 
2β/ω0. The phase is normalized to π/2, while the amplitudes are normalized to Vs. 
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There are a number of other resonances for this circuit. We can, for instance, look for 
the maxima of the voltage amplitudes, the so called amplitude resonances of the circuit; see 
Figure 3. To predict these, we extremize the amplitudes versus the frequencies (dA 

dω 
(ω) = 

0). Clearly the current and the voltage across the resistor will be maximized at the same 
frequency: 

dVR(ω) 
= 0 −→ ωR = ω0 , 

dω ωR 

or the current amplitude resonance occurs at the same frequency as the natural oscillation 
frequency of the circuit. Interestingly, the amplitude resonance for the capacitor and inductor 
voltages are not the same as for the current! For the capacitor, q 

dVC (ω) 
= 0 −→ ωC = ω0

2 − 1/2(2β)2 , 
dω ωC 

the resonant voltage amplitude across the capacitor occurs at a lower frequency than the 
phase resonance! For the inductor, s 

ω4 dVL(ω) 0 = 0 −→ ωL = . 
dω ωL 

ω2 − 1/2(2β)2 
0 

the resonant voltage amplitude occurs at a frequency higher than the phase resonance. Of 
course, these last two resonance conditions will only occur if the radical is real. 

4 Procedures 

You should receive two multimeters (one of which should be a BK-5460), an oscilloscope, a 
function generator, a decade resistance box, a decade capacitance box, and an inductor. 

1. First, select component values for testing. Select a frequency between 300 Hz and 
600 Hz, and a value for C between 0.06 µF and 0.1 µF. Record the value of the in-
ductance, L. Measure and record the values of the inductor resistance R0 , and C. 
Calculate X = |XL − XC | and choose a value for R + R0 ≈ 1.2X. Set, measure and 
record R. 

2. Configure the circuit for testing shown in Figure 1. Insert the Simpson multimeter to 
record the AC current. 

3. Using the BK Precision meter, record the frequency f , and the RMS AC voltages 
across the signal generator Vs, the resistor VR, the capacitor VC , and the inductor VL. 
Are these values consistent? 

4. Measure the phase shift between the current and applied voltage for your chosen fre-
quency. Connect the oscilloscope so as to measure the voltage across the resistor and 
signal generator; make sure the negtive inputs share a common reference point. Make 
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sure the two signal baselines are centered with respect to the horizontal and vertical 
axes of the oscilloscope, and adjust the voltage and time scales so that slightly more 
than one cycle of both waveforms is visible. Measure the phase shift as you did in 
the previous lab. Increase the frequency by 50%, and determine the phase shift again. 
Halve the initial frequency, and repeat. 

5. Next, find the resonant frequency. First, predict the value. Then, go searching for it 
experimentally. There are three methods to do this: 

(a) Find the frequency which maximizes the current (or the voltage across the resis-
tor), 

(b) Find the frequency which eliminates the phase shift in AB mode, or 

(c) Find the frequency which collapses the XY mode Lissajous figure to a line. 

In an ideal world each method should give the same result, although the last method 
is both easiest and most accurate. Do all three methods, in fact, produce the same 
result? 

6. Next, map out the amplitude of the current response. Without changing R or C, vary 
the frequency over, say, ten points, and record the frequency, RMS voltage Vs and RMS 
current I at those points. The low frequency should be about half the phase resonance, 
the high frequency should be about twice the phase resonance, and the middle point 
should be at the phase resonance. 

7. Finally, let’s search for the amplitude resonances of VC (t) and VL(t). Without changing 
C, set R + R0 = 0.4X. 2 Confirm that the phase resonance has the same frequency. 
Predict the frequencies of both amplitude resonances. Using either the multimeter or 
the oscilloscope, search for the amplitude resonances. Do they match your prediction? 

A Derivation of Solutions 

Applying Kirchoff’s rules to the series RLC circuit leads to a second order linear differential 
equation with constant coefficients, with a driving function. We won’t solve this function in 
all its glory as we did for the first order equation that arises for the RC and RL equations. 
In fact, solving the equation is somewhat beyond the level of the prerequisite mathematics 
for this course, so we’ll just quote the solution here.3 

Let’s write the differential equation in the form 

d2q(t) dq(t) 
+ 2β + ω0

2 q(t) = A cos ωt . 
dt2 dt 

A full solution to this equation can be written in terms of two functions: 

2Why do we have to change R? 
3Although you can look up the solution methods on the net, or in any standard sophomore level physics 

or mathematics text. I take the notation from Marion and Thornton’s Classical Dynamics. 
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1. The “complementary” or “homogeneous” solution qc(t), when A = 0. This is the 
transient solution, and decays away exponentially; we’ll not dwell on this any further. 

2. The “particular” solution qp(t), where we don’t drop the driving term. We previously 
called this one the “steady state” solution. Typically, we take “trial solutions” of the 
same form as the driving term, and see if we can come work up a function that satisfies 
the equation. 

Let’s try a particular solution that’s a sinusoid. Before diving in, let’s think about the form 
of the physical solution that we’re looking for here. In our specific problem, the solution to 
the differential equation is the charge on the capacitor, but the physics we’re interested in 
is the phase difference between the current and the drive voltage. Thus, we want a current 
that is of the same functional form as the drive voltage, plus a phase offset. Since we choose 
a drive voltage that is a cosine, and current is the derivative of the charge, we want to choose 
a steady state (particular) solution of the form 

qp(t) = D sin (ωt + δ) . 

To show this is a solution, we need to find D and δ, which we do by substituting into the 
differential equation, to obtain 

−Dω2 sin (ωt + δ) + 2βDω cos (ωt + δ) + Dω0
2 sin (ωt + δ) = A cos ωt . 

Next, we expand the sin and cos terms, since: 

cos(a + b) = cos ωt cos δ − sin ωt sin δ sin(a + b) = sin ωt cos δ + cos ωt sin δ , 

which gives six terms on the left, half of which contain a sin ωt and the other have contain 
cos ωt. The right hand side contains only cos ωt. If this is a solution, the coefficients of the 
sin ωt and cos ωt terms must separately be equal, and must be collectively consistent. Thus, 
we have two equations for the two unknowns D and δ 

sin ωt : −Dω2 cos δ − 2βDω sin δ + Dω0
2 cos δ = 0 

cos ωt : −Dω2 sin δ + 2βDω cos δ + Dω0
2 sin δ = A . 

The sin ωt equation can be solved for δ 

ω2 − ω2 
0 tan δ = . 
2βω 

Now that we have δ, we can use the second equation to solve for D 

A 
D = . 

(ω0
2 − ω2) sin δ + 2βω cos δ 

How do we substitute for δ in this latter equation? Using the trigonometric relations 

sin δ 
tan δ = sin2 δ + cos 2 δ = 1 , 

cos δ 
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you can show that 

ω2 − ω2 2βω 
sin δ = q 0 cos δ = q . 

2 2 2 2 (ω0
2 − ω2) + (2βω) (ω0

2 − ω2) + (2βω) 

Substituting these values, you will obtain the coefficient D 

A 
D = q . 

(ω0
2 − ω2)

2 
+ (2βω)2 
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Pre-Lab Exercises 

Answer these questions as instructed on Blackboard; make sure to submit them before your 
lab session! 

1. Derive a relationship between the voltage amplitudes Vs, VR, VC , and VL for the RLC 
circuit. Hint: how is Vs related to the impedance? 

2. A series RLC circuit is driven at 500 Hz by a sine wave generator. It has parameters 
R = 5 kΩ, L = 2 H, and C = 2 µF. What is the impedance of the circuit? 

3. What is the phase resonance frequency for the circuit in the previous question? 

4. Does this circuit have amplitude resonances? If so, what are their frequencies? 

5. If you use instead a 0.08 µF capacitor, does the circuit have amplitude resonances? If 
so, what are their frequencies? What is the new phase resonance? 
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Post-Lab Exercises 

1. From your recorded inductance, and the measured resistance, capacitance, inductance, 
and initial frequency, determine the impedance of your circuit. Make sure to estimate 
your uncertainties. Determine the impedance experimentally via another method, 
taking care of the uncertaintites. Do you get the same results? 

2. Estimate the uncertainties on the measured values of Vs, VL, VC , and VR. Are these 
values consistent with each other? Explain what you mean by “consistent”. 

3. From your measurements in Step 4 of the procedure, determine the phase shift at each 
of the three measured frequencies, including an estimate of the uncertainty. How do 
these compare to the theoretical predictions? 

4. Are your three measurements of the phase resonance frequency in Step 5 consistent 
with each other? With theoretical prediction? 

5. Describe qualitatively what happens to your signals when you vary the frequency 
around the phase resonance. 

6. Is your data from Step 6 consistent with the predictions of theory? Specifically, do the 
voltage and current amplitudes measured by oscilloscope and by multimeter match, 
within uncertainties, and do they comport with theoretical expectations? 

7. Why did you have to change the resistance value for Step 7? Did you find the amplitude 
resonances? If so, do their values agree with your theoretical predictions? 

8. Discuss briefly whether you have met the objectives of the lab exercises. 
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