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The Time Constant of an RC Circuit 

1 Objectives 

1. To determine the time constant of an RC Circuit, and 

2. To determine the capacitance of an unknown capacitor. 

2 Introduction 

What the heck is a capacitor? It’s one of the three passive circuit elements: the resistor 
(which we’ve already met), the capacitor (which stores energy in electric fields), and the 
inductor (which stores energy in magnetic fields, and is the main subject a few weeks from 
now). Also known as condensers, capacitors store energy an electric field by separating 
positive and negative charges on opposing terminals known as “plates” - which may or may 
not actually be plate-like. Capacitors trace their lineage to the middle of the Eighteenth 
century and the invention of the Leyden jar. For forty years, the biggest names in natural 
philosophy spent time in the study of charge storage and improving capacitors, including 
Volta (for whom we name the volt) and Franklin (of American Founding Father fame). 

In this lab, we will study the behavior of capacitors while we add or remove charge from 
the plates. Although we won’t touch on it in this lab, RC circuits form the foundation of the 
modern electronics that underlie a whole host of technologies, including radio, computers, 
environmental and medical sensors, and - not least of all - the touch screens in cell phones 
and the touch pads of laptops. 

3 Theory 

We normally write Ohm’s Law for the resistor as V (t) = I(t)R. But what is that current 
I(t)? In the circuits here (see Figure 1), it’s just the rate at which charge passes through 
the resistor. Since all the charge that runs through the resistor ends up going from or to the 
capacitor, q(t), it must also be the case that 

dq(t) 
I(t) = ± , 

dt 

where q(t) is the time dependent charge on the capacitor, with the sign depending on whether 
the charge on the capacitor is increasing or decreasing. For this circuit, we could instead 
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Figure 1: The switching circuit used to discuss charging and discharging a capacitor. 

write Ohm’s Law in the form 

dq(t) V (t) 
= ± . 

dt R 

In words, a resistor is a passive device where the applied voltage causes charge to flow 
through the device, while a capacitor is a passive device where the applied voltage causes 
charge storage in the device; in equation form 

q(t) = CV (t) . 

The constant C is called the capacitance, and is measured in Farads (named for Michael 
Faraday, whose research output we will learn about later this semester) where F = C/V. 

Since capacitors are used to store charge, we must find a way to change the charge state 
on the capacitor. Let’s discuss the circuit in Figure 1. This circuit has three states: 1. The 
steady state, where the switch is open, no current flows in the resistor, and the charge state 
on the capacitor is constant, 2. the “charging” state, where the battery or power supply is 
connected to the capacitor and adds charge to the capacitor, and 3. the “discharging” state, 
where the battery is disconnected, the two plates of the capacitor are connected to each 
other through the resistor, which removes charge from the capacitor. 

We can analyze the dynamic states of the circuit using Kirchoff’s Rules1: 

1. The Loop rule (energy conservation) requires the sum of all voltages drops around a 
closed loop to vanish, and 

2. The Junction rule (charge conservation) requires the sum of all currents into a junction 
to vanish. 

Let’s apply these rules, first to the discharging and then to the charging state: 

1. Discharging: In the discharging case, the current will flow off the capacitor in a counter 
clockwise direction (why?). When we close that switch, Kirchoff’s rules become 

Vc − VR = 0 

dq(t) q(t) − − = 0 . 
dt RC 

1As long as the frequencies aren’t so high that we can’t use the lumped element approximation; talk to 
your instructor if you want to know more. 
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Again, the rate is negative, because the capacitor is discharging, not charging. The 
method of solution for this equation is given in Appendix A: 

−t/RC Vc(t) = VR(t) = Vse , 

assuming that the initial voltage across the capacitor is Vs. This “discharge curve” is 
plotted in Figure 2. 

2. Charging: In the charging case, the current flows clockwise from the battery (at voltage 
Vs), through the resistor (at VR), and across the capacitor Vc; we want to solve for Vc 

as a function of time. Kirchoff’s Rules tell us 

Vs − VR − Vc = 0 
q 

Vs − IR − 
C 

But here, the current through the resistor depends on the rate at which charge is chang-
ing on the capacitor; they have the same sign here since the charge on the capacitor is 
increasing 

dq(t) q(t) 
Vs − R − = 0 

dt C 
dq(t) q(t) Vs 

+ = . 
dt RC R 

We can solve this differential equation too for the time dependent voltage profile across 
the capacitor; see Appendix A. If we start with a completely discharged capacitor, the 
voltages across the resistors and capacitors vary as � � −t/RC Vc(t) = Vs 1 − e 

−t/RC VR(t) = Vse . 

As the capacitor charges, the voltage across - and hence the charge on - the capacitor 
rises exponentially, while the voltage across - and hence the current through - the 
resistor will fall exponentially; see Figure 2. 

The quantity RC - which appears in the argument of the exponential - is known as the 
time constant of the system; it has units of time (hence the name), and determines the time 
interval over which voltages, charges, and currents change in the circuit. The time constant 
can be tuned by modifying either R or C. In practice, more resistor than capacitor values 
are commercially available, so it’s usually easier to tune the resistor values. 

Given a known resistance we can measure the time constant of the RC circuit, and 
algebraically determine the capacitance C. When discharging the capacitor, 

−t/RC Vc(t) = Vse . 
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Figure 2: The capacitor charging and discharging curves. The vertical blue line is the “half 
life” point of the charging and discharging timeline. 

We can easily measure and use the half-life T1/2 of the discharge: T1/2 is the time it takes for 
the voltage to fall by half. Substituting into the above equations and solving for T1/2: 

Vs −T1/2/RC = Vse 
2 
1 T1/2 

ln = − 
2 RC 

T1/2 = (C ln 2) R . 

If we allow R to vary, then this equation defines a line with abscissa R, ordinate T1/2, and 
slope C ln 2. If we measure multiple (R, T1/2) pairs, we can plot those data points, fit them 
to a line, and extract the slope - and hence the capacitance. 

4 Procedures 

You should receive an oscilloscope, a function generator, a multimeter, one unknown capac-
itor, a decade capacitance box, and a decade resistance box. 

4.1 Time Constant of an RC Circuit 

In this part of the experiment, instead of a DC voltage and a mechanical switch, we apply 
a square wave signal to the capacitor as shown in Figure 3. An ideal square wave has two 
values: high and low (here Vs and 0), and it switches between them instantaneously. The 
capacitor will charge when the voltage of the square wave is Vs; the capacitor will discharge 
when the voltage of the square wave is zero. The oscilloscope traces of the charging and 
discharging of the capacitor are also shown in Figure 3. 
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Figure 3: The left-hand figure is the circuit used to measure the time constant of an RC 
circuit, while the right-hand figure shows the Oscilloscope traces. 

If the period of the square wave Ts is much less than the time constant τ = RC (Ts � τ), 
then the capacitor will start discharging before it has sufficient time to acquire the maximum 
charge q0, making measurement of the time constant difficult. What will this look like on 
the oscilloscope? If Ts is much more than τ (Ts � τ ), you will not be able to fit both the 
charging and discharging portions of the capacitor voltage on the oscilloscope trace at the 
same time. Why? 

1. Construct the circuit shown in Figure 3a. 

2. Perform the initial turn-on procedure for the oscilloscope (from the Oscilloscope Lab). 
To start, set both channels to 0.2V/div. Make sure that the ground of both traces is 
at the same position on the screen. 

3. Start by setting the frequency of the square wave to about 100 Hz and the output 
voltage to 0.5 V. 

4. Now we have to set R and C. Adjust R to about 8 kΩ, and C to about 0.1 µF. What 
is the time constant of this combination? 

5. Adjust the frequency of the square wave, and the time and voltage settings of the 
oscilloscope until you obtain traces similar to Figure 3b. Measure and record R, C, f , 
V , T1/2, and the oscilloscope settings. 

6. Measure the voltage of the decay curve above ground at a number of points using the 
oscilloscope cursors; similarly, measure the height of the charging curve at a number 
of points. You will use these to map out the charging/discharging curves, and fit for 
the time constant. 

7. Repeat for a second set of R and C. 

4.2 Determine the Capacitance 

Here, we’ll use the same techniques we just did to determine the value of an unknown 
capacitor. 
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1. Replace the known capacitor with the unknown capacitor in the circuit. 

2. Set the resistance to about 4 kΩ, and make the necessary adjustments to the oscillo-
scope settings to again obtain the appropriate display on the oscilloscope. 

3. Measure and record R, f , V , the oscilloscope settings, and T1/2. 

4. Repeat for four or five values of R; you need enough points to fit a line through your 
(R, T1/2) pairs. 

5. Use your multimeter to directly measure the capacitance, for comparison to your ex-
tracted value.2 

A Derivation of Solutions 

The differential equations in Section 3 are the simplest of all differential equations to solve: 
first order, linear equations with constant coefficients. Here, we’ll solve a slightly more 
complicated equation (a first order linear equation with non-constant coefficients) in complete 
generality, and use this solution to find the solutions we’re interested in. Consider the 
following differential equation: 

dy(x) 
+ P (x)y(x) = Q(x) . 

dx 

This equation looks very much like the equations we found in Section 3 using Kirchoff’s Rules. 
We can solve this in the following way. First, we’ll multiply both sides of this equation by a 
new function, M(x), and we’ll first solve for M(x). 

dy(x) 
M(x) + M(x)P (x)y(x) = M(x)Q(x) . 

dx 

Let’s now assume that the left hand side is the expansion of the product rule of M(x)y(x): 

d 
(M(x)y(x)) = M(x)Q(x) . 

dx 

What must be true for this to hold? Well, 

d dy(x) dM(x) dy(x) 
(M(x)y(x)) = M(x) + y(x) = M(x) + M(x)P (x)y(x) . 

dx dx dx dx 

This is true if and only if 

dM(x) 
= M(x)P (x) . 

dx 
2The multimeter uses an automated version of exactly this procedure to calculate C, based on a time 

constant measurement across a precision internal resistor. 
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This is a “trivial” problem to solve: just separate and integrate: 
R R R 
P (x)dx+c c P (x)dx 0 P (x)dx M(x) = e = e e = c e , 

where c is the constant of integration for this indefinite integral. Now, go a few lines back 
up the page: 

d 
(M(x)y(x)) = M(x)Q(x) . 

dx 

We can solve this one trivially, too, just by integrating; let’s make this a definite integral 
between x0 and x. We get the left hand side from the Fundamental Theorem of Calculus Z x 

M(x)y(x) − M(x0)y(x0) = M(x)Q(x)dx , 
x0 

where, since this is an indefinite integral, requires an integration constant c. Finally, then, 
we can solve the general problem: � Z x � 

y(x) = M(x)−1 M(x0)y(x0) + M(x)Q(x)dx . 
x0 

Note that the integration constant in the definition of M(x) cancels here, so it doesn’t really 
matter what it was; let’s just choose c0 = 1. 

In the case of the charging RC circuit with zero initial charge, x = t, y(x) = q(t), x0 = 0, 
t/RC y(x0) = 0, P (t) = 1/RC, and Q(t) = Vs/R. Integrating gives us M(t) = e , giving us the 

solution: Z t Vs −t/RC t/RC q(t) = e e dt 
R 0 

Vs 
RCe−t/RC 

� 
t/RC − 1 

� 
= e 

R � � −t/RC = VsC 1 − e , 

where we’ve used the integration constant to get the t = 0 value right (here, no charge on 
the capacitor). Dividing both sides by C gives us the voltage across the capacitor at time t � � −t/RC Vc(t) = Vs 1 − e . 

In the case of the discharging circuit, we have 

Ce−t/RC q(t) = Vs , 

where we assume the voltage across the capacitor at t = 0 is Vs. Again, divide by C to get 
the voltage profile 

−t/RC Vc(t) = Vse . 
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Pre-Lab Exercises 

Answer these questions as instructed on Blackboard; make sure to submit them before your 
lab session! 

1. What is the time constant for an RC circuit with R = 45 kΩ and C = 1.2 µF? 

2. If it takes 5 µs for a capacitor to charge to half the battery voltage, through a 10 kΩ 
resistor, what is the capacitance C? 

3. A given RC circuit charges through a particular resistor R, and capacitor, C. If I 
double the capacitance, what happens to the time constant? What if I double the 
resistance? 
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Post-Lab Exercises 

1. Determine the time constant of the RC circuit with known capacitance. Do this by 
plotting your data of time versus the amplitude of the signal. You should fit this data 
to an exponential, and extract τ . There are a number of ways to do this: (a) use a 
mathematics package capable of sophisticated statistical analysis, such as R, Octave, 
Matlab, Mathematica, Root, etc., or (b) using a spreadsheet, fit the data using an 
exponential trendline analysis. Alternatively, you can transform your spreadsheet data 
into a linear data set, and do a linear trendline analysis. Estimate the uncertainty 
of this measured time constant. You should also estimate the time constant from the 
measured T1/2. Do these multiple experimental extractions agree within your estimated 
uncertainty? Do they agree with the theoretical expectation given your measured R 
and C? 

2. Determine the unknown capacitance. Plot your (R, T1/2) data pairs, and fit the data 
to a line. Extract the capacitance from the fitted line parameters. Estimate the 
uncertainty of this extracted capacitance. You can also estimate the capacitance from 
the individual (R, T1/2) pairs; estimate your uncertainties. Do these estimates agree 
with the line fit estimate? 

3. Discuss briefly whether you have met the objectives of the lab exercises. 
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